The recent advent of large language models - large neural networks trained on a simple predictive objective over a massive corpus of natural language - has reinvigorated debate over whether human cognitive capacities might emerge in such generic models given sufficient training data. Of particular interest is the ability of these models to reason about novel problems zero-shot, without any direct training on those problems. In human cognition, this capacity is closely tied to an ability to reason by analogy. Here, we performed a direct comparison between human reasoners and a large language model (GPT-3) on a range of analogical tasks, including a novel text-based matrix reasoning task closely modeled on Raven's Progressive Matrices. We found that GPT-3 displayed a surprisingly strong capacity for abstract pattern induction, matching or even surpassing human capabilities in most settings. Our results indicate that large language models such as GPT-3 have acquired an emergent ability to find zero-shot solutions to a broad range of analogy problems.
translated by 谷歌翻译
Developments in autonomous vehicles (AVs) are rapidly advancing and will in the next 20 years become a central part to our society. However, especially in the early stages of deployment, there is expected to be incidents involving AVs. In the event of AV incidents, decisions will need to be made that require ethical decisions, e.g., deciding between colliding into a group of pedestrians or a rigid barrier. For an AV to undertake such ethical decision making and path planning, simulation models of the situation will be required that are used in real-time on-board the AV. These models will enable path planning and ethical decision making to be undertaken based on predetermined collision injury severity levels. In this research, models are developed for the path planning and ethical decision making that predetermine knowledge regarding the possible collision injury severities, i.e., peak deformation of the AV colliding into the rigid barrier or the impact velocity of the AV colliding into a pedestrian. Based on such knowledge and using fuzzy logic, a novel nonlinear weighted utility cost function for the collision injury severity levels is developed. This allows the model-based predicted collision outcomes arising from AV peak deformation and AV-pedestrian impact velocity to be examined separately via weighted utility cost functions with a common structure. The general form of the weighted utility cost function exploits a fuzzy sets approach, thus allowing common utility costs from the two separate utility cost functions to be meaningfully compared. A decision-making algorithm, which makes use of a utilitarian ethical approach, ensures that the AV will always steer onto the path which represents the lowest injury severity level, hence utility cost to society.
translated by 谷歌翻译
在这项研究中,将放射学方法扩展到用于组织分类的光学荧光分子成像数据,称为“验光”。荧光分子成像正在出现在头颈部鳞状细胞癌(HNSCC)切除期间的精确手术引导。然而,肿瘤到正常的组织对比与靶分子表皮生长因子受体(EGFR)的异质表达的内在生理局限性混淆。验光学试图通过探测荧光传达的EGFR表达中的质地模式差异来改善肿瘤识别。从荧光图像样品中提取了总共1,472个标准化的验光特征。涉及支持矢量机分类器的监督机器学习管道接受了25个顶级功能的培训,这些功能由最小冗余最大相关标准选择。通过将切除组织的图像贴片分类为组织学确认的恶性肿瘤状态,将模型预测性能与荧光强度阈值方法进行了比较。与荧光强度阈值方法相比,验光方法在所有测试集样品中提供了一致的预测准确性(无剂量)(平均精度为89%vs. 81%; P = 0.0072)。改进的性能表明,将放射线学方法扩展到荧光分子成像数据为荧光引导手术中的癌症检测提供了有希望的图像分析技术。
translated by 谷歌翻译
现实世界的行为通常是由多种代理之间复杂的相互作用来塑造的。为了可靠地研究多代理行为,无监督和自我监督的学习的进步使从轨迹数据中学到了各种不同的行为表示。迄今为止,还没有一组统一的基准测试,可以在广泛的行为分析设置中进行定量和系统地比较方法。我们的目的是通过引入来自现实世界行为神经科学实验的大规模,多代理轨迹数据集来解决这一问题,该数据集涵盖了一系列行为分析任务。我们的数据集由来自通用模型生物的轨迹数据组成,其中有960万帧的小鼠数据和440万帧的飞行数据,在各种实验环境中,例如不同的菌株,相互作用的长度和光遗传学刺激。框架的子集还包括专家注销的行为标签。我们数据集的改进对应于跨多种生物的行为表示,并能够捕获常见行为分析任务的差异。
translated by 谷歌翻译
基于风险的积极学习是开发用于在线决策支持的统计分类器的方法。在这种方法中,根据初始数据点的完美信息的预期值来指导数据标签查询。对于SHM应用程序,根据维护决策过程评估信息的价值,并且数据标签查询对应于检查结构以确定其健康状态的检查。采样偏见是主动学习范式中的一个已知问题;当一个主动学习过程过多或未示例的特定区域时,就会发生这种情况,从而导致训练集不代表基础分布。这种偏见最终降低了决策绩效,因此导致不必要的费用。当前的论文概述了一种基于风险的主动学习方法,该方法利用了半监督的高斯混合模型。半监督的方法通过通过EM算法合并了未标记的数据来抵消采样偏差。该方法在SHM中发现的决策过程的数值示例中得到了证明。
translated by 谷歌翻译
获得对结构的操作和维护做出明智决定的能力,为实施结构健康监测(SHM)系统提供了动力。但是,与受监测系统的健康状态相对应的测量数据的描述性标签通常不可用。此问题限制了完全监督的机器学习范例的适用性,用于开发用于SHM系统决策支持的统计分类器。解决此问题的一种方法是基于风险的积极学习。在这种方法中,根据初始数据点的完美信息的预期值来指导数据标签查询。对于基于风险的SHM中的主动学习,可以根据维护决策过程评估信息的价值,并且数据标签查询对应于检查结构以确定其健康状态的检查。在SHM的背景下,仅考虑生成分类器的基于风险的主动学习。当前的论文展示了使用替代类型的分类器 - 判别模型的几个优点。在SHM决策支持的背景下,使用Z24桥数据集作为案例研究,歧视性分类器具有好处,包括改善对采样偏见的鲁棒性以及减少结构检查的支出。
translated by 谷歌翻译
分类模型是物理资产管理技术的基本组成部分,如结构健康监测(SHM)系统和数字双胞胎。以前的工作介绍了\ Texit {基于风险的主动学习},一种在线方法,用于开发考虑它们所应用的决策支持上下文的统计分类器。通过优先查询数据标签来考虑决策,根据\ Textit {完美信息的预期值}(EVPI)。虽然通过采用基于风险的主动学习方法获得了几种好处,但包括改进的决策性能,但算法遭受与引导查询过程的采样偏差有关的问题。这种采样偏差最终表现为在主动学习后的后期阶段的决策表现的下降,这又对应于丢失的资源/实用程序。目前的论文提出了两种新方法来抵消采样偏置的影响:\纺织{半监督学习},以及\ extentit {鉴别的分类模型}。首先使用合成数据集进行这些方法,然后随后应用于实验案例研究,具体地,Z24桥数据集。半监督学习方法显示有变量性能;具有稳健性,对采样偏置依赖于对每个数据集选择模型所选择的生成分布的适用性。相反,判别分类器被证明对采样偏压的影响具有优异的鲁棒性。此外,发现在监控运动期间进行的检查数,因此可以通过仔细选择决策支持监测系统中使用的统计分类器的仔细选择来减少。
translated by 谷歌翻译
We demonstrate a proof-of-concept of a large language model conducting corporate lobbying related activities. We use an autoregressive large language model (OpenAI's text-davinci-003) to determine if proposed U.S. Congressional bills are relevant to specific public companies and provide explanations and confidence levels. For the bills the model deems as relevant, the model drafts a letter to the sponsor of the bill in an attempt to persuade the congressperson to make changes to the proposed legislation. We use hundreds of ground-truth labels of the relevance of a bill to a company to benchmark the performance of the model, which outperforms the baseline of predicting the most common outcome of irrelevance. However, we test the ability to determine the relevance of a bill with the previous OpenAI GPT-3 model (text-davinci-002), which was state-of-the-art on many language tasks until text-davinci-003 was released on November 28, 2022. The performance of text-davinci-002 is worse than simply always predicting that a bill is irrelevant to a company. These results suggest that, as large language models continue to improve core natural language understanding capabilities, performance on corporate lobbying related tasks will continue to improve. We then discuss why this could be problematic for societal-AI alignment.
translated by 谷歌翻译
In the past years, deep learning has seen an increase of usage in the domain of histopathological applications. However, while these approaches have shown great potential, in high-risk environments deep learning models need to be able to judge their own uncertainty and be able to reject inputs when there is a significant chance of misclassification. In this work, we conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole-Slide-Images under domain shift using the H\&E stained Camelyon17 breast cancer dataset. Although it is known that histopathological data can be subject to strong domain shift and label noise, to our knowledge this is the first work that compares the most common methods for uncertainty estimation under these aspects. In our experiments, we compare Stochastic Variational Inference, Monte-Carlo Dropout, Deep Ensembles, Test-Time Data Augmentation as well as combinations thereof. We observe that ensembles of methods generally lead to higher accuracies and better calibration and that Test-Time Data Augmentation can be a promising alternative when choosing an appropriate set of augmentations. Across methods, a rejection of the most uncertain tiles leads to a significant increase in classification accuracy on both in-distribution as well as out-of-distribution data. Furthermore, we conduct experiments comparing these methods under varying conditions of label noise. We observe that the border regions of the Camelyon17 dataset are subject to label noise and evaluate the robustness of the included methods against different noise levels. Lastly, we publish our code framework to facilitate further research on uncertainty estimation on histopathological data.
translated by 谷歌翻译
In large-scale machine learning, recent works have studied the effects of compressing gradients in stochastic optimization in order to alleviate the communication bottleneck. These works have collectively revealed that stochastic gradient descent (SGD) is robust to structured perturbations such as quantization, sparsification, and delays. Perhaps surprisingly, despite the surge of interest in large-scale, multi-agent reinforcement learning, almost nothing is known about the analogous question: Are common reinforcement learning (RL) algorithms also robust to similar perturbations? In this paper, we investigate this question by studying a variant of the classical temporal difference (TD) learning algorithm with a perturbed update direction, where a general compression operator is used to model the perturbation. Our main technical contribution is to show that compressed TD algorithms, coupled with an error-feedback mechanism used widely in optimization, exhibit the same non-asymptotic theoretical guarantees as their SGD counterparts. We then extend our results significantly to nonlinear stochastic approximation algorithms and multi-agent settings. In particular, we prove that for multi-agent TD learning, one can achieve linear convergence speedups in the number of agents while communicating just $\tilde{O}(1)$ bits per agent at each time step. Our work is the first to provide finite-time results in RL that account for general compression operators and error-feedback in tandem with linear function approximation and Markovian sampling. Our analysis hinges on studying the drift of a novel Lyapunov function that captures the dynamics of a memory variable introduced by error feedback.
translated by 谷歌翻译